References

  1. 1. Blaney, J.M. Ph.D. dissertation, University of California, San Francisco, 1982.
  2. 2. Connolly, M.L. Analytical molecular surface calculation. J. Appl. Cryst. 16: 548-558, 1983.
  3. 3. Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 221: 709-713, 1983.
  4. 4. DesJarlais, R.L., and Dixon, J.S. A shape and chemistry-based docking method and its use in the design of HIV-1 protease inhibitors. J. Comput.-Aided Molec. Design 8(3): 231-242, 1994.
  5. 5. DesJarlais, R.L., Sheridan, R.P., Seibel, G.L., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J. Med. Chem. 31(4): 722-729, 1988.
  6. 6. Ewing, T.J.A, and Kuntz, I.D. Critical evaluation of search algorithms used in automated molecular docking. J. Comput. Chem. 18(9): 1175-1189, 1997.
  7. 7. Ferro, D.R. and Hermans, J. A different best rigid-body molecular fit routine. Acta Cryst. A33: 345-347, 1977.
  8. 8. Fletcher, R. "Practical Methods of Optimization." New York: Interscience, 1960.
  9. 9. Gilson, M.K., Sharp, K.A. and Honig, B.H. J. Comp. Chem. 9: 327, 1987.
  10. 10. Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28: 849-857, 1985.
  11. 11. Gschwend, D.A, and Kuntz, I.D. Orientational sampling and rigid-body minimization in molecular docking revisited -- On-the-fly optimization and degeneracy removal. J. Comput.-Aided Molec. Design, 10:123-132, 1996.
  12. 12. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Cryst. A32: 922-923, 1976.
  13. 13. Kabsch, W. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Cryst. A34: 827-828, 1978.
  14. 14. Klapper, I., Hagstrom, R., Fine, R., Sharp, K. and Honig, B. Proteins. 1: 47-59, 1986.
  15. 15. Kuhl, F.S., Crippen, G.M., and Friesen, D.K. A Combinatorial Algorithm for Calculating Ligand Binding. J. Comput. Chem. 5:24-34, 1984.
  16. 16. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161: 269-288, 1982.
  17. 17. Kuntz, I.D. Structure-based strategies for drug design and discovery. Science. 257: 1078-1082, 1992.
  18. 18. Kuntz, I.D., Meng, E.C. and Shoichet, B.K. Structure-based molecular design. Acc. Chem. Res. 27(5): 117-123, 1994.
  19. 19. Leach, A.R., and Kuntz, I.D. Conformational analysis of flexible ligands in macromolecular receptor sites. J. Comput. Chem. 13(6): 730-748, 1992.
  20. 20. Meng, E.C., Shoichet, B.K. and Kuntz, I.D. Automated docking with grid-based energy evaluation. J. Comp. Chem. 13: 505-524, 1992.
  21. 21. Meng, E.C., Gschwend, D.A., Blaney, J.M. and Kuntz, I.D. Orientational sampling and rigid-body minimization in molecular docking. Proteins. 17(3): 266-278, 1993.
  22. 22. Meng, E.C., Kuntz, I.D., Abraham, D.J. and Kellogg, G.E. Evaluating docked complexes with the hint exponential function and empirical atomic hydrophobicities. J. Comp-Aided Mol. Design. 8: 299-306, 1994.
  23. 23. Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P. FLOG - A system to select quasi-flexible ligands complementary to a receptor of known three-dimensional structure. J. Comput.-Aided Mol. Design
  24. 24. Nelder, J.A. and Mead, R. Computer Journal 7: 308, (1965).
  25. 25. Richards, F.M. Ann. Rev. Biophys. Bioeng. 6: 151-176, 1977.
  26. 26. Shoichet, B.K. and Kuntz, I.D. Protein docking and complementarity. J. Mol. Biol. 221: 327-346, 1991.
  27. 27. Shoichet, B.K., Bodian, D.L. and Kuntz, I.D. Molecular docking using shape descriptors. J. Comp. Chem. 13(3): 380-397, 1992.
  28. 28. Shoichet, B.K., Stroud, R.M., Santi, D.V., Kuntz, I.D. and Perry, K.M. Structure-based discovery of inhibitors of thymidylate synthase. Science. 259: 1445-1450, 1993.
  29. 29. Shoichet, B.K. and Kuntz, I.D. Matching chemistry and shape in molecular docking. Protein Eng. 6(7): 723-732, 1993.
  30. 30. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Jr. and Weiner, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106: 765-784, 1984.
  31. 31. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A. An all atom force field for simulations of proteins and nucleic acids. J. Comp. Chem. 7: 230-252, 1986.

 

UC Regents 1998
Top / Up / Previous / Next