The basis for the refinement is the calculation of the volume of a
cross peak
between spins **i** and **j**, , from the atomic coordinates
by means
of the relaxation matrix ** R**
(Macura and Ernst 1980; Ernst et al. 1987; Keepers and
James 1984):

where is the mixing time. The relaxation matrix ** R** is a
function
of the transition rates

which are determined by spectral densities and dipolar coupling strengths (Solomon 1955):

and

is the gyromagnetic ratio of the proton and
the distance between spins **i** and **j**. At present, only protons can be
used in the refinement.
describes the non-NOE magnetization losses
from the lattice.

In the simplest model, it is assumed that a single isotropic correlation time is sufficient to describe the spectral densities (Solomon 1955):

A step beyond this simple model is the ``model-free" approach of Lipari and Szabo (1982), where the internal motion is described by two parameters, an effective correlation time and an order parameter :

X-PLOR uses an approximation of this equation that assumes that the internal motion is much faster than the overall rotation of the molecule (i.e., ), such that the second term in the equation becomes negligible. In order to take into account the different motional behavior of different parts of the molecule, different correlation time and order parameters can be entered for different proton-proton vectors.

Groups of protons whose resonances are degenerate due to motion (in general, mostly methyl groups) are treated roughly as in CORMA, version 1.5 (Keepers and James 1984). (Note that cross peaks which are ambiguous due to overlap should be dealt with in a different way; see the example input file in Section 21.7.) Each such group is represented by one spin, whose intensity is scaled by the number of protons in the group, and the distance to the group is calculated as the or average over the protons in the group (Eq. 21.4). In addition, a diagonal leakage rate is added for each group of protons.

Protons can be removed from the spin system (exchangeable protons in DO spectra, deuterium-labeled molecules), or their appropriate occupancy can be specified (exchangeable protons in HO spectra).

Sat Mar 11 09:37:37 PST 1995